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Accurate Early Exercise Free
Boundaries for American Puts

Zvan, Forsyth and Vetzal (1998) (2000) have introduced the method
of applying the constraints implicitly. That is, for each time step, one
has to iterate on the grid points to find out the one below which the
constraint (2) should be applied, and above which Equation (1) is satis-
fied. This grid point is the numerical approximation of the early
exercise boundary.

Based on this idea, we have developed an efficient method for pricing
American option, which we call Coarseboundary. Coarseboundary is
optimized for grid adaptive refinement. As we shall see,
Coarseboundary computes the American put option with high accuracy
on theoretical value, delta and gamma, even with very small number of
time steps and spot steps. Another advantage of the finite difference
methods is that, with just one function call, we know the value of the
option for all times and spot prices.

Once the space mesh is fixed, the difference between the numerical
free boundary and the real exercise boundary is of the order of the size of
the space discretization interval. With a standard space mesh of about
100 points, we cannot expect to capture the exercise boundary very accu-
rately. As a consequence, when we plot gamma as a function of the
underlying spot price, It may oscillate in the neighborhood of the free
boundary.

Hence the idea: why not make a change of variables and let the exer-
cise boundary be aligned with nodes of the computational grid? Based
on this idea, we develop a new method which we call Fineboundary.

1 Introduction
We consider an American put option with strike price K and maturity T.
We note r > 0 the continuously compounded risk-free rate, q ≥ 0 the
continuous dividend yield and σ the local volatility. The option price V at
time t and spot S satisfies the Black-Scholes partial differential equation

∂V

∂ t
+ σ 2

2
S2 ∂2V

∂S2
+ (r − q)S

∂V

∂S
= rV for T > t ≥ 0, S > 0 (1)

with the constraint 

V(S, t) ≥ max(K − S, 0) (2)

and the initial data

V(S, T) = max(K − S, 0). (3)

Here, r and q may depend on time, and σ may depend on time and spot.
This is a free boundary problem. It could be solved by the finite dif-

ference methods based on fixed spatial mesh. The traditional approach is
to apply the American constraint explicitly. That is, Equation (1) is solved
at each time step and the constraint is immediately applied to the solu-
tion. As it cannot guarantee the continuity of the Delta at the free bound-
ary, this approach may cause instability and bad convergence when the
time step is large.

Abstract
We present a numerical method for computing the free boundary problem for the American Put. A change of variable at each time step transforms the free boundary prob-
lem into a fixed one so that a mesh, that is refined near the “free boundary” is build once for all. We prove the accuracy of our numerical scheme with several examples.



Given a guess Bn , previously computed Bn+1, and V̄n+1, Equation (8) gives
V̄n . We write 

V̄n = solver(Bn). (9)

We introduce the function 

f (Bn) = V̄n(1) − K + Bn = solver(Bn)(1) − K + Bn, (10)

and we iteratively find Bn such that 

f (Bn) = 0. (11)

3 Numerical Examples
In this section, we present some numerical results of the Fineboundary
method and compare them to those of Coarseboundary and Binomial
method.

We have computed an American put option with K = 100,
T = 3, r = 0.06, q = 0.03 and σ = 0.1.

Figure 1 shows the convergence of the computed exercise boundary
at time t = 0 when we increase the number of steps N. We note that the
approximated exercise boundary has already 4 exact digits with only 100
steps. Figure 2 shows that Fineboundary is far more accurate than the
two other reference methods.

Figure 3 plots the approximation of early exercise boundary vs. time
close to the maturity T = 3. Because of the singularity of the curve at
maturity, N = 100 is not sufficient to compute a good approximation for
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2 Fineboundary Method
For each t, we note B(t) the early exercise boundary below which the
American option must be exercised. Thus B(t) satisfies:

{
V(B(t), t) = K − B(t)
∂V

∂S
(B(t), t) = −1

(4)

If B(t) were a known function, we could make the change of variables 

S̄ = S

B(t)
. (5)

Equation (1) would become 

∂ V̄

∂ t
+ σ 2

2
S̄2 ∂2V̄

∂ S̄2
+
(

r − q − Ḃ

B

)
S̄
∂ V̄

∂ S̄
= rV̄ for t > 0, S̄ > 1, (6)

with both Dirichlet and Newman data on the fixed boundary S̄ = 1

{
V̄(1, t) = K − B(t),
∂ V̄

∂ S̄
(1, t) = −B(t),

(7)

where Ḃ denotes ∂B
∂ t . The initial condition for B is B(T) = min(K, Kr/q) (Kim

(1990)).
The PDE (6) would be solved on a fixed N × N grid, with the Neumann

data on S̄ = 1, where N is the number of steps. The grids being non uni-
form in general, we could further refine the space grid at S̄ = 1 and the
time grid at t = T, in order to capture more accurately the rapidly chang-
ing solution. 

As the free boundary is not known in advance, an iterative procedure
will have to find the appropriate B and hence the change of variables so
that the Dirichlet data is also satisfied.

In practice, the time discretization is based on a Crank-Nicholson
scheme. If Di and D2

i denote first and second discrete derivatives opera-
tors, defined by

Di(V) = Vi+1 − Vi−1

Si+1 − Si − 1

D2
i (V) = 2

Si+1 − Si − 1

(
Vi+1 − Vi

Si+1 − Si
− Vi − Vi−1

Si − Si − 1

)
,

Equation (6) is approximated by :

V̄n+1
i − V̄n

i


t
+ σ 2

2
S̄2

i

D2
i (V̄

n+1) + D2
i (V̄

n)

2

+
(

r − q − 2


t

Bn+1 − Bn

Bn+1 + Bn

)
S̄i

Di(V̄n+1) + Di(V̄n)

2
= r

V̄n+1
i + V̄n

i

2
.

(8)
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Figure 1: Early exercise boundary at t=0, with different number of steps
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t > 2.85. However, the exercise boundary computed with 300 steps fits
already very well with that computed with 1500 steps.

We are also interested in how accurate the option price computed by
Fineboundary method may be. Figure 4 plots the option price for S = 100
computed by Fineboundary, Coarseboundary and Binomial methods
with number of steps varying from 100 to 1500. Figure 5 plots the delta
value for S = 100 computed by these methods. Although Fineboundary
gives a good result, Coarseboundary seems to do better!

Figure 6 plots the convergence of gamma computed for S = 100 by
Fineboundary method and Coarseboundary.

But if we run Coarseboundary once and plot the gamma for different
spot levels in the same mesh, we can see that the gamma oscillates badly
in the neighbourhood of the exercise boundary, as shown in Figure 7 by
the curve denoted by ‘Coarseboundary 100 steps (one solve)’. The figure
also plots the gamma value computed by Fineboundary method using
100 and 1500 steps. We see that the two curves are exactly the same.

Figure 2: Early exercise boundary at t=0 computed by different methods
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Figure 3: Early exercise boundary vs. time, computed with Fineboundary
using 100, 300 and 1500 steps

Time t

E
ar

ly
 e

xe
rc

is
e 

bo
un

da
ry

2.8 2.9 32.85 2.95

94

95

96

97

98

99

100

100 steps 
300 steps 
1500 steps

Number of steps N

P
ri

ce

0 1000500 1500

3.963

3.964

3.9625

3.9635

Fineboundary  
Coarseboundary
Binomial      

Figure 4: Convergence of the option price for S=100 computed using
Fineboundary, Coarseboundary and Binomial method
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Figure 5: Convergence of option delta for S=100 computed using
Fineboundary, Coarseboundary and Binomial method
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However that does not mean that Coarseboundary fails to compute the
gamma close to the exercise boundary. Indeed there are two ways that we
can exploit a finite difference solver. Either the mesh is built once and for
all for the given option, and values for the option and its greeks are inter-
polated off the grid for different spot levels and times (this is the method
adopted in Fineboundary), or we can rebuild a mesh, centered and
refined around the spot level, every time we want to compute values for
that spot level. Coarseboundary is in fact based on the latter method. So

we may as well plot gamma against spot level using Coarseboundary,
only this time we would call the solver for every spot level and remesh for
that spot level. The result is the curve denoted by ‘Coarseboundary 100
steps’ in figure 7. 

We see that this curve fits perfectly the gamma computed by
Fineboundary method. What happens in this case is that Coarseboundary
remeshes and refines the mesh near the reference spot, hence near the
free boundary, when it gets close to it. The free boundary is therefore cap-
tured more finely and gamma is more accurate.

Figure 8 shows the convergence of the gamma value for the spot 90,
which is very close to the exercise boundary with two different meth-
ods. Although Coarseboundary yields a very accurate gamma for this
spot, Fineboundary converges more smoothly with the increasing
number of steps.

In conclusion, Coarseboundary performs very well, but Fineboundary
gives an accurate gamma for all spots whereas we need to run
Coarseboundary once for each spot, especially near the free boundary.

Table 1 shows the results for the option prices and deltas computed by
the Fineboundary method with 100 steps. The results are compared to
the “converged” values computed with a Binomial tree with a very large
number of steps. We note that the absolute error of the price is around
0.001, and the deltas are very accurate. The results computed using 1500
steps are not displayed, since they are exactly the same as the Binomial
benchmark values at the 3th decimal digit. We also show here the results
calculated by the approach proposed by Lai, Yao, and AitSahlia (1999). The
approach is based on the integral equation of Kim (1990). Even with a very
small time refinement (δ = 10−4), their result does not match the quality
of our solutions, both for the price and for the delta, as seen in Table 1.
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Figure 6: Convergence of Gamma for S=100 computed using Fineboundary
and Coarseboundary
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Figure 7: Gamma values computed using Fineboundary and
Coarseboundary
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Figure 8: Convergence of Gamma on spot 90 computed using Fineboundary
and Coarseboundary 



TECHNICAL ARTICLE 6

W

4 Conclusion and Perspectives
In this work, we have introduced a new algorithm Fineboundary, to com-
pute American puts. The results above show that the new algorithm is
very accurate in capturing the early exercise boundary. But we have also
shown that, as far as the accuracy of the option price, delta or gamma are
concerned, it is not a crucial to adopt the new algorithm except when the
region of interest is close to the exercise boundary. A method like
Coarseboundary still produces a good gamma, which may be cahotically
convergent in a very small error range. The problem with
Coarseboundary, however, is that a new run is needed for every new ref-
erence spot. By contrast, Fineboundary produces an accurate gamma
accurate for all spot levels at once! Moreover, we can exploit homogeneity,
and use a single solve of Fineboundary to compute all puts of different
strikes and given maturity. This is achieved by interpolation over different
spot levels in the grid of Fineboundary. As the free boundary is perfectly
captured in that grid, we can safely interpolate, even in its neighbour-
hood. This is not possible in Coarseboundary as shown in figure 7.
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TABLE 1. ACCURACY OF FINEBOUNDARY METHOD.
CASE I: T=3, σ=0.1, r = 0.06; CASE II: T=0.5, σ=0.2,
r = 0.06

Price Delta

q S TrueVal FB100 ALH TrueVal FB100 ALH

Case I .09 80 22.787 22.787 22.787 −0.754 −0.754 −0.754

90 15.706 15.706 15.706 −0.655 −0.655 −0.655

100 9.843 9.842 9.843 −0.511 −0.511 −0.511

110 5.561 5.560 5.561 −0.346 −0.346 −0.346

120 2.840 2.839 2.839 −0.204 −0.204 −0.204

.06 80 20.000 20.000 20.000 −1.000 −1.000 −1.000

90 11.593 11.591 11.598 −6.686 −6.686 −6.682

100 6.087 6.085 6.082 −0.425 −0.425 −0.428

110 2.870 2.867 2.870 −0.231 −0.231 −0.231

120 1.221 1.220 1.221 −0.110 −0.110 −0.110

.03 80 20.000 20.000 19.998 −1.000 −1.000 −1.000

90 10.057 10.057 10.051 −0.905 −0.905 −0.904

100 3.964 3.963 3.962 −0.383 −0.383 −0.383

110 1.449 1.448 1.448 −0.152 −0.152 −0.152

120 0.489 0.488 0.488 −0.055 −0.055 −0.055

.00 80 20.000 20.000 19.992 −1.000 −1.000 −1.000

90 10.000 10.000 9.984 −1.000 −1.000 −1.000

100 2.723 2.723 2.727 −0.366 −0.366 −0.365

110 0.706 0.706 0.705 −0.096 −0.096 −0.096

120 0.178 0.178 0.178 −0.025 −0.025 −0.025

Case II .09 80 20.802 20.802 20.803 −0.906 −0.906 −0.906

90 12.422 12.421 12.422 −0.748 −0.748 −0.748

100 6.183 6.183 6.183 −0.491 −0.491 −0.491

110 2.535 2.534 2.534 −0.250 −0.250 −0.250

120 0.865 0.865 0.865 −0.100 −0.100 −0.100

.06 80 20.093 20.093 20.094 −0.949 −0.949 −0.949

90 11.545 11.543 11.545 −0.742 −0.742 −0.742

100 5.504 5.502 5.504 −0.462 −0.462 −0.462

110 2.154 2.153 2.154 −0.223 −0.223 −0.223

120 0.701 0.701 0.701 −0.085 −0.085 −0.085

.03 80 20.000 20.000 20.000 −1.000 −1.000 −1.000

90 10.953 10.951 10.953 −0.760 −0.760 −0.760

100 4.961 4.959 4.961 −0.442 −0.442 −0.443

110 1.843 1.842 1.843 −0.200 −0.200 −0.200

120 0.570 0.570 0.570 −0.072 −0.072 −0.072

.00 80 20.000 20.000 20.000 −1.000 −1.000 −1.000

90 10.522 10.521 10.523 −0.794 −0.794 −0.794

100 4.493 4.491 4.492 −0.427 −0.427 −0.427

110 1.578 1.577 1.577 −0.180 −0.180 −0.180

120 0.462 0.462 0.462 −0.061 −0.061 −0.061

The columns labeled TrueVal contain the values of the options obtained using a 20 000

step binomial lattice. The columns labeled FB100 contain the values computed by
FFiinneebboouunnddaarryy method using 100 steps. The columns labeled ALH contain the hybrid

data reported by AitSahlia and Lai (2001).
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