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No Fear of Jumps

path-dependent options. For these more complicated scenarios, numeri-
cal partial differential equation techniques must be used.

The objective of this paper is to present a robust and efficient numer-
ical method for solving the partial integro differential equation (PIDE)
which arises from the jump diffusion model. We limit ourselves to pric-
ing options under the jump diffusion model, but this framework is also
applicable to credit risk models or more complex valuation models such
as stochastic volatility with jumps. In the latter case, one simply has to
solve a two dimensional PIDE problem, and apply the techniques pre-
sented below for the jump diffusion part in the stock direction. A major
advantage of the methods introduced here is that they are easily added
to existing numerical option pricing software. In particular, software
that uses an implicit approach for valuing American options can be eas-
ily modified to price American options with jump diffusion.

The title of this paper is obviously based on the very readable article
“Fear of Jumps” by Lewis (2002). This article was mostly analytical in nature,
and relied on an equilibrium based approach to option pricing. In contrast,
the article presented here has a numerical focus for pricing options under
jump diffusion. Further, we attempt to convince the reader that adding a
jump component to pricing software can be approached with “no fear”.

1 Introduction
In 1973, the Black-Scholes model revolutionized derivative pricing
(Black and Scholes, 1973). Using only a volatility and an interest rate,
Robert Black and Myron Scholes developed an arbitrage free pricing
formula that does not require knowledge of investor beliefs about the
underlying stock’s expected return. However, over the years practition-
ers have recognized the limitations of the Black-Scholes model. In par-
ticular, the constant volatility assumption is insufficient to capture
the smile or skew that is exhibited by the implied volatilities of traded
financial options.

To better capture these volatility profiles, numerous avenues of
research have been explored which either extend the Black-Scholes
model or explore completely new approaches. Among these extensive
works, the jump diffusion model (Merton, 1976) and the stochastic
volatility model (which could include jumps as well) (Bates, 1996; Scott,
1997; Bakshi et al., 1997) appear to be the most popular among practi-
tioners. Unfortunately, a large portion of the literature devoted to these
approaches is limited to analytical or quasi-analytical solutions for vanil-
la options. Very few of these methods can be extended to price exotic or
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This equation has been the subject of countless studies, and is well-
understood from a variety of viewpoints (financial, mathematical,
numerical). Letting

LV = 1

2
σ 2S2VSS + rSVS − rV (2.3)

equation (2.2) can be written in the simple form

Vτ = LV. (2.4)

It is assumed that the reader is familiar with the numerical solution of
PDEs of the form (2.4). Software for this problem is easily written, and off-
the-shelf implementations are readily available.

Nevertheless, the process specified by equation (2.1) is not sufficient
to explain observed market behaviour (Bakshi and Cao, 2002). In reality,
stock prices have been observed to have large instantaneous jumps. Such
behaviour can be modeled by the risk-neutral process (Merton, 1976)

dS

S
= (r − λκ) dt + σ dZ + (η − 1)dq, (2.5)

where dq is a Poisson process (independent of the Brownian motion), and
η − 1 is an impulse function producing a jump from S to Sη. If λ is the
arrival intensity of the Poisson process, then dq = 0 with probability
1 − λdt, and dq = 1 with probability λdt. The expected jump size can be
denoted by κ = E[η − 1], where E is the expectation operator.

As is well known, the fair price of a contingent claim V(S, t) under a
process of the form (2.5) is given by the following partial integro differ-
ential equation (PIDE):

Vτ = 1

2
σ 2S2VSS + (r − λκ) SVS − rV + λ

∫ ∞

0
V(Sη)g(η)dη − λV. (2.6)

In equation (2.6), g(η) is the probability density function of the jump
amplitude η. The probability density function is assumed to have the
usual distribution properties, such as ∀η, g(η) ≥ 0 and 

∫ ∞
0 g(η)dη = 1.

Letting

L̂V = 1

2
σ 2S2VSS + (r − λκ)SVS − (r + λ)V, (2.7)

equation (2.6) can be written as

Vτ = L̂V + λ

∫ ∞

0
V(Sη)g(η)dη. (2.8)

As with LV , the behaviour of L̂V is well understood. Further, it should be
straightforward to modify any reasonably designed software that can
handle numerically LV to compute L̂V . Of a more difficult nature is the
integral term in equation (2.8).

The obvious approach for the numerical computation of the inte-
gral term is to use standard numerical integration methods such as
Simpson’s rule or Gaussian quadrature. Unfortunately, for a numerical
grid of size n, these techniques are O(n2). For real-time pricing soft-
ware, and especially for calibration routines, quicker algorithms are
desirable.
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Alternatively, this paper could have been entitled “Fear of No Jumps”, as our
examples are intended to show that a jump component adds essential fea-
tures to a pricing model. Without these features, one should be concerned
about the accuracy and stability of the pricing framework.

Our technique is similar in some respects to Zhang (1997), though
less constrained in terms of stability restrictions. Our method also offers
a higher rate of convergence than Zhang’s. Similar comments apply if we
compare our approach to that of Andersen and Andreasen (2000), at least
in the case of American options.

In this article, the PIDE presented by (Merton, 1976; Andersen and
Andreasen, 2000) is studied exclusively. While it is true that Merton’s
assumption about jump risk being diversifiable does not hold for
index based options, and in this case one must use an equilibrium
based method (Lewis, 2002) or a mean variance hedging approach
(Ayache et al., 2004), the PIDEs resulting in either case are essentially
identical. Consequently, the numerical techniques presented here can be
applied.

This article is organized as follows. In section 2, the numerical
method for solving the option pricing PIDE which results from a jump
diffusion model is presented. In section 3, a wide variety of numerical
examples of exotic, path-dependent contracts are presented. In particu-
lar, we include numerical examples for American, and Parisian options.
Finally, section 4 contains concluding remarks.

2 Mathematical Model
This section provides an overview of the mathematical modeling issues
that arise in a jump diffusion framework. The presentation and notation
closely follows that of d’Halluin et al. (2003). However, particular atten-
tion is paid here to the practical issues that arise in a numerical imple-
mentation. Further, since the goal of this paper is somewhat illustrative,
several proofs and technical details have been omitted. The reader is
referred to d’Halluin et al. (2003) and the references therein for a com-
plete treatment of the theory of option pricing in a jump diffusion
framework.

In the usual (no jumps) Black-Scholes model for option pricing (Black
and Scholes, 1973; Merton, 1976), the underlying asset price S evolves
according to

dS

S
= µdt + σ dZ, (2.1)

where µ is the (real) drift rate, σ is the volatility, and dZ is the increment
of a Gauss-Wiener process. Let V(S, t) be the value of a contingent claim
that depends on the underlying asset S and time t. By appealing to the
principle of no-arbitrage, a partial differential equation (PDE) for the
value of V can be derived:

Vτ = 1

2
σ 2S2VSS + rSVS − rV, (2.2) 

where τ = T − t is the time remaining until expiry T, and r is the continu-
ously compounded risk-free interest rate. Equation (2.2) is simply a second
order parabolic PDE of one space dimension and one time dimension.

Wilmott magazine 63



64 Wilmott magazine

To this end, the integral term of equation (2.8) should be computed in
a way that is

• efficient (better than O(n2)),
• robust,
• flexible (can be used with nonlinear pricing models, and/or exotic

options),
• easily added to existing option pricing software.

All of these properties are satisfied if
• the integral term is evaluated by FFTs, thereby only requiring

O(n log n) operations per timestep,
• the integral term is applied implicitly, thereby increasing stability

and allowing the possibility of second order convergence.

The FFT evaluation of the integral and the implicit treatment of the
resulting terms will be discussed separately below. Following these, an
extension to American options will be provided, as well as a brief descrip-
tion of credit risk. Examples which use the techniques described below
are provided in section 3.

It should be noted that in some cases, the integral term can be evalu-
ated directly in O(n) time using fast Gauss transform (FGT) techniques
(Greengard and Strain, 1991). While this technique works for the case
where jump sizes are lognormally distributed, it is not clear if it works
for more general distributions. Furthermore, numerical experiments
show that for any practical grid size the FFT approach for evaluating the
integral term is faster than the FGT method. (Note that the integral
needs only to be evaluated with an accuracy consistent with the dis-
cretization of the PDE).

2.1 FFT evaluation
Before the integral term of equation (2.8) can be evaluated by FFTs, it
must be manipulated into the form of a correlation integral. This process
is described in section 2.1.1. Once this process is done, at least two
numerical issues remain. First, standard FFT algorithms require an
equally spaced grid, whereas an efficient PDE grid will be unequally
spaced. Interpolation must be used to move from one grid to the other.
Second, since the input functions to the FFT routines will be non-periodic,
wrap-around pollution can negatively affect the solution. These numerical
issues are discussed in section 2.1.2.

2.1.1 Manipulation

Ignoring the leading λ, the integral term in equation (2.8) is

I(S) =
∫ ∞

0
V(Sη)g(η)dη. (2.9)

The goal is to turn this expression into a correlation product which can
be evaluated by FFT techniques. Letting x = log(S) and applying the
change of variable y = log(η), we obtain

I =
∫ +∞

−∞
V̄(x + y)f̄ ( y)dy, (2.10)

where f̄ ( y) = g(ey)ey and V̄( y) = V(ey). The f̄ ( y) term can be interpreted
as the probability density of a jump of size y = log η . Conveniently,
equation (2.10) corresponds to the correlation product V̄( y) ⊗ f̄ ( y). In
discrete form, equation (2.10) becomes

Ii =
j=N/2∑

j=−N/2+1

V̄i+j f̄j
y + O
(
(
y)2

)
, (2.11)

where Ii = I(i
x), V̄j = V̄( j
x), and

f̄j = f̄ ( j
y) = 1


x

∫ x j+
x/2

x j−
x/2
f̄ (x)dx (2.12)

It has been assumed that 
y = 
x.
Assuming that f̄ is real (a safe assumption for financial applications),

the discrete correlation of equation (2.11) can be evaluated using FFTs since

Ii = IFFT
((

FFT(V̄)
) (

FFT( f̄ )
)∗)

i
(2.13)

where (·)∗ denotes the complex conjugate. For efficiency, FFT( f̄ ) can be
pre-computed and stored. During each timestep (or each iteration of an
iterative method), an FFT and an inverse FFT must be computed.

2.1.2 Numerical issues

A typical grid for the discretization of L̂V in equation (2.8) will be
unequally spaced in S coordinates. For example, small mesh spacing will
be used near strikes or barriers, with large mesh spacing elsewhere.
However, the discrete form of the correlation integral (2.11) requires an
equally spaced grid in log(S) coordinates. It is highly unlikely that these
two grids are fully compatible. Hence, values must be interpolated
between the two grids.

In particular, values of V on the unequally spaced S grid must be
interpolated onto an equally spaced log(S) grid. The computation of
equation (2.13) can then be performed1. Finally, the resulting equally
spaced V̄ data needs to be interpolated back onto the unequally spaced S
grid. The overall process is summarized in algorithm (1). If linear or

Algorithm 1 Method for computing the integral term of equation (2.8) by FFTs.

Interpolate the discrete values of V onto an equally spaced log(S) grid. This

generates the required values of V̄j.

Carry out the FFT on the V̄ data

Compute the correlation in the frequency domain (with pre-computed FFT(f̄)

values), using equation (2.13).

Invert the FFT of the correlation

Interpolate the discrete values of I(xi) back onto the original S grid



^

Wilmott magazine 65

higher order interpolation is used, algorithm (1) is second order correct.
This is consistent with the discretization error in the PDE and the mid-
point rule used to evaluate the integral in equation (2.11).

For the actual FFT evaluation, standard algorithms assume periodic
input data. If the input data is not periodic (as with the current application),
then the discrete Fourier transform is effectively applied to the periodic
extension of the input functions. This can lead to undesirable “wrap around
pollution”, which manifests itself with erroneous values in the solution.

To avoid wrap around effects, the domain of the integral in
equation (2.8) can be extended to the left and right by amounts 
y−

and 
y+ . The integral then becomes

Iext =
∫ ymax +
y+

ymin −
y−
V̄(x + y)f̄ ( y)dy, (2.14)

where ymax = log(Smax), ymin = log(Smin), and [Smin, Smax] are
selected appropriately. Unknown values in the range [ ymax , ymax + 
y+ ]
can be obtained by linear extrapolation. This assumes that the far field
behaviour of the option pricing problem is linear. Values in the range
[ ymin − 
y−, ymin] can be obtained from interpolation on the original S
grid, assuming an S0 = 0 grid point has been maintained.

Once the FFT has been performed in the extended domain, values in
the extensions are discarded. Because of the extension, values in the orig-
inal domain will have been less affected by wrap-around pollution.

2.2 Implicit evaluation

We now look at the numerical evaluation of equation (2.8). Let �n
i

denote the discrete form of the integral evaluated at timestep n using
data Vn (one can think of � as an application of algorithm (1)). To solve
equation (2.8), the L̂V term must also be discretized. This can be done by
any standard method, such as finite differences, finite volumes, or finite
elements. Let the discrete form of L̂V at timestep n be given by 

(
L̂V

)n

i
. A

general discretized form of equation (2.8) can then be written as

Vn+1
i − Vn

i


τ
= (1 − θ)

(
L̂V

)n+1

i
+ θ

(
L̂V

)n

i
+ (1 − θJ)λ� n+1

i + θJλ�n
i , (2.15)

where
θ is a time-weighting parameter for L̂
θ = 0 is fully implicit

θ = 1/2 is Crank-Nicolson

θ = 1 is fully explicit

θJ is time-weighting for the jump term �

θJ = {0, 1/2, 1}.
Let M denote the discretization matrix stencil such that

−[MV ]ni =
(
L̂V

)n

i
. (2.16)

Equation (2.15) becomes

[I − 
τ (1 − θ)M]Vn+1 = [I + 
τθM]Vn + (1 − θJ)λ
τ �n+1
i + θJλ
τ�n

i .

(2.17)

For standard PDE discretization techniques, the matrix M in
equation (2.17) is tridiagonal. Tridiagonal systems are quick and easy to
solve. However, an implicit treatment of the jump term (θJ �= 1) causes
�n+1

i to lead to a highly undesirable dense matrix (all nodal values are
coupled in equation (2.10)). On the other hand, a fully explicit treat-
ment of the jump term is easy to adapt to existing code, since only the
right hand side vector needs to be updated. However, while still stable,
only first order convergence is possible.

To allow for an implicit treatment of jumps, a fixed point iteration
method must be used. A description of the method is given in algorithm (2).
At iteration k known data is used to construct the jump term. Since only the
right hand side is affected, a simple tridiagonal system needs to be solved
at each iteration.
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Algorithm 2 Fixed point iteration.

Let (Vn+1)0 = Vn

Let V̂k = (Vn+1)k

Let �̂k = (�n+1)k

Construct vector �n using algorithm (1)

for k = 0, 1, 2, . . . until convergence do
Construct vector �̂k using algorithm (1)

Solve [I − (1 − θ)M]V̂k+1 = [I + θM]Vn + (1 − θJ)λ�̂k + λθJ�
n

if maxi
|V̂ k+1

i
−V̂ k

i
|

max(1,|V̂ k+1

i
|) < tolerance then

quit

end if
end for

Under some fairly mild assumptions - that the discretization of L̂
form an M-matrix, the probability density function has certain stan-
dard properties, the interpolation weights are positive, and that r
and λ are positive - it can be proven that algorithm (2) is globally con-
vergent (d’Halluin et al., 2003). Further, the error at each iteration is
reduced by approximately (1 − θ)λ
τ , indicating convergence in a
small number of iterations (i.e. for typical values, 3 iterations are
sufficient).

2.3 American options

American options can be solved by a simple penalty approach. Details of
the penalty approach can be found in (Forsyth and Vetzal, 2002). Further
details with regards to jump diffusion models can be found in (d’Halluin
et al., 2003). Briefly, the penalty approach involves adding a penalty term
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to the pricing PDE. Equation (2.8) then becomes

Vτ = L̂V + λ

∫ ∞

0
V(Sη)g(η)dη + ρ max(V∗ − V, 0). (2.18)

In the limit as ρ → ∞, the solution satisfies V ≥ V∗ . The American con-
straint is enforced by setting V∗ to the payoff of the option.

In the discrete equations, ρ is set independently at each node. If the
value at a node i drops below V∗

i (the payoff), then ρi is set to a large num-
ber. This essentially adds an extra source term to the PDE, thereby
increasing the value at the particular node. If the value at a node is
greater than V∗ , then ρi is set to zero, and the regular PDE is solved. This
can also be thought of as constraint switching. Wherever the value
drops below the V∗ threshold, the constraint is switched on and applied.
If the value is above the threshold, the constraint is switched off.

As with the evaluation of the integral term, the penalty constraint
can be applied explicitly or implicitly. An explicit evaluation simply uses
data at the previous timestep to determine when the constraint is acti-
vated. An implicit evaluation could use a fixed point iteration (or other
nonlinear solving method) to apply the constraint using data at the cur-
rent timestep. If the jump term is already being evaluated using an itera-
tive method, little or no extra cost is incurred by the penalty method.
Convergence of the penalty approach for American options in a jump dif-
fusion framework was proven in (d’Halluin et al., 2003).

2.4 Credit risk
Until this point, jumps in stock price associated with the jump diffusion
model have been assumed to occur for arbitrary exceptional events.
However, a special jump in asset level occurs in the case of bankruptcy. In
pricing corporate and convertible bonds, it is of interest to determine the
risk adjusted hazard rate of bankruptcy. If it is assumed that the stock
price of a firm jumps to zero on default, then λh can be interpreted as the
risk adjusted hazard rate of bankruptcy (or default in the case of bonds).
In this case, the PDE satisfied by vanilla puts/calls in the presence of a sin-
gle jump to bankruptcy is given by

Vτ = 1

2
σ 2S2VSS + (r + λh)SVS − (r + λh)V + λhV(0, τ ). (2.19)

Equation (2.19) can be derived by hedging arguments, or by setting κ to −1
and the jump probability density function g(η) to the delta function δ(0) (1
at η = 0, zero elsewhere) in the usual Merton jump diffusion model.

It is usually assumed that λh = λh(S, t), with λh(S, t) being determined
by calibration to observed market prices for vanilla options and credit
instruments. Since option prices are usually available for a range of
strikes, more information is provided about default rates than is usually
available from simply examining credit instruments. Note that equation
(2.19) suggests that default risk has an effect on the pricing of vanilla
options. As well, if the possibility of a single jump to bankruptcy is
assumed, then a hedging portfolio consisting of the option, an underly-
ing asset, and an additional option can be constructed which eliminates
both the diffusion risk (a delta hedge) as well as the jump risk (since the
jump has only one possible outcome).

3 Results
The examples of this section are intended to compare the regular Black-
Scholes model and the jump-diffusion model. To ensure a consistent
basis for comparison, the following procedure is used:

1. Given some jump diffusion parameters, compute the (numerical) at-
the-money price Vjump of European put option.

2. Using a constant volatility Black-Scholes model, determine the
implied volatility σimplied which matches the option price to the
jump diffusion value Vjump at the strike K .

3. Value the option using a constant volatility model (no jumps) using
the implied volatility σimplied estimated in Step 2.

The first example prices a European put option with and without
jumps. Parameters are provided in Table 1. Results are shown in Figure 1.
The implied volatility value for the Black-Scholes model is 0.1886. By con-
struction, the prices of the Black-Scholes model and the Merton jump
model are equal at the strike price. In-the-money values are larger for the
Black-Scholes model, but only slightly. Of interest is the fact that the jump
model prices deep out-of-the-money options significantly higher. This
reflects the fact that a jump event can dramatically change the money-
ness of an option to a much larger extent than a simple diffusion only
model.

The delta and gamma plots for the two models are similar, although
the jump model plots show greater variation. This indicates that a delta
hedge of the jump model may need more frequent rebalancing.
Nevertheless, jumps introduce market incompleteness, and simple delta
hedging will definitely fail. Optimal hedging in incomplete markets is
preferred (Henrotte, 2002; Ayache et al., 2004). In any case, hedging will
require accurate delta and gamma information. It is essential that the
numerical scheme produce smooth delta and gamma values.

TABLE 1. INPUT DATA USED TO VALUE VARI-
OUS OPTIONS UNDER THE LOGNORMAL JUMP
DIFFUSION PROCESS. THESE PARAMETERS
ARE APPROXIMATELY THE SAME AS THOSE
REPORTED IN (ANDERSEN AND ANDREASEN,
2000) USING EUROPEAN CALL OPTIONS ON
THE S&P 500 STOCK INDEX IN APRIL OF 1999

volatility: σ 0.15 

risk-free rate: r 0.05 

jump standard deviation: γ 0.45 

jump mean: µmean −0.90 

jump intensity: λ 0.10 

time to expiry: T 0.25  

strike: K 1.00 
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The second example is a repeat of the first, except that an American
put option is priced instead of a European put option. The implied
volatility value used is the same as in the previous example:
σimplied = 0.1886. Results are similar, except that delta values now reach
and remain at −1 for low stock prices, while gamma values jump to

zero. This jump to zero occurs at the free boundary between the early-
exercise region and the regular pricing region. The early exercise
region is further to the right for the Merton jump model, indicating
that jumps cause an increase in the probability that the option should
be exercised early.

TECHNICAL ARTICLE 2
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Figure 1: Put option price (V), delta (VS) and gamma (VSS). The input data is contained in Table 1
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The last example is for a Parisian knock-out call option. The particular
case considered here is an up-and-out call with daily discrete observation
dates. This contract ceases to have value if S is above a specified barrier
level for a specified number of consecutive monitoring dates. This can be

valued by solving a set of one-dimensional problems which exchange
information at monitoring dates (Vetzal and Forsyth, 1999). Base parame-
ters are the same as in Table 1. The knock-out barrier is placed at S = 1.20,
while the number of consecutive days above the barrier until knock-out is
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Figure 2: American put option price (V), delta (VS) and gamma (VSS). The input data is contained in Table 1
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set to 10. The implied volatility value is 0.1886. It is interesting to note
that the Merton jump model gives smaller prices for stock values below
the strike and above the barrier. This is somewhat in contradiction to the

put options, for which deep out-of-the-money prices were higher for the
jump model. Nevertheless, the differences are small, and the delta and
gamma plots show the far field behaviour to be quite similar.

TECHNICAL ARTICLE 2

Figure 3: Parisian knock-out call option (V), delta (VS) and gamma (VSS) with discrete daily observation dates with and without jumps. The barrier is
set at S = 1.20 and the number of consecutive daily observations to knock-out is 10. The input data is contained in Table 1
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The greatest price difference occurs between the strike and barrier
levels. Presumably a jump in this region hides the effect of the (upper)
barrier, whereas a pure diffusion model will have its value decreased by
the barrier. However, it is difficult to intuitively predict the effect of
jumps on prices. For convex payoffs, jumps increase the value of an
option. For non-convex payoffs, as is the case for the Parisian knock-out
call, it is not clear what effect jumps will have on the price.

4 Conclusion
This article has demonstrated the numerical evaluation of the PIDE
resulting from the Merton jump-diffusion model in option pricing. The
integral term of the pricing equation was evaluated using efficient FFT
techniques. The issues of interpolation between unequally spaced PDE
grids and equally spaced FFT grids, as well as wrap-around pollution
effects, were briefly discussed. A fixed point iteration method was used
to obtain an implicit timestepping method without resorting to a full
dense matrix solve. Extensions to American options and credit risk were
also mentioned.

Perhaps the biggest advantage of the techniques described in this
paper is the ease with which they can be added to an existing exotic
option pricing library. All that is required is that a function be added to
the library which, given the current vector of discrete option prices,
returns the vector value of the correlation integral. This vector is then
added to the right hand side of the fixed point iteration. This method
can even be applied to any jump size probability density function.

The numerical examples showed the effect of jumps on various
option values. For European and American put options, the jump diffu-
sion model increases deep out-of-the-money prices. Changes to the hedg-
ing parameters—delta and gamma—were also noted. The stability of the
methods was alluded to by the smooth delta and gamma plots. An exam-
ple of a Parisian knock-out option was also provided.

An important issue not addressed in this paper is hedging jump dif-
fusion models. Since the market is incomplete, simple delta hedging can
give large errors. In this case optimal hedging in incomplete markets
must be used (Ayache et al., 2004).

1. Methods exist for computing an FFT on unequally spaced data. However, these meth-

ods do not appear to be more efficient than the straight forward approach suggested

here.
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