
In the equity derivatives space, local 
volatility has been viewed for a long time 
as being the final and universal answer 
to the ‘smile problem’. Local academics 
and practitioners loved this elegant 
generalisation of the Black-Scholes setting, 
which is easy to implement on a modified 
binomial tree and fits any volatility surface. 
Someone with basic programming skills 
could quickly derive a pricing and hedging 
solution for a set of derivatives instruments 
written on the same underlying security, 
which would respect the fundamental 
requirement of absence of arbitrage.

At one point, it seemed all that was 
needed to price an exotic instrument, no 
matter how complex, was the input data 
from a volatility surface. Countless articles 
would explain how to derive the price of an 
exotic instrument, such as a barrier option, 
a forward-starting option or a variance swap, from the knowledge 
of the volatility surface. Calibration was limited to the derivation 
of a well-behaved local volatility surface; a numerically ill-posed 
but computationally straightforward and fast process. Most 
importantly, this generalisation of the Black-Scholes paradigm 
vindicated the ubiquitous practice of delta hedging, and any 
derivative could be exactly replicated by dynamical trades in the 
underlying. Risk managers were left to worry about vega risk, 
generalised from a single number under the lognormal diffusion 
to an array of values in the local volatility framework, a practice 
called bucketing.

However, numerous cracks appeared in 
the local volatility paradigm over the years, 
which led to the gradual demise of this 
convenient framework. First and foremost 
in the equity space, local volatility does not 
account for the possibility of default. The 
proponents of the diffusion framework 
proposed structural models where default 
was gradually and rationally anticipated 
by the market, implying no jump and 
no surprise at the time of default. This 
generated great academic interest but had 
little practical sense since default is usually 
associated with a near collapse of the share 
price in a sudden and dramatic way. The 
theoretical prices of the deep out-of-the-
money puts are absurdly cheap in any 
diffusive framework, but fall nicely in line as 
soon as a jump to default is introduced. An 
out-of-the-money put with 50% moneyness 

and one month to maturity is valued at USD 0.0000000007 
under Black-Scholes, with 40% volatility and an underlying price 
normalised at USD 100. Add a jump to default with 1% chance of 
occurring within a year and the put suddenly costs USD 0.04. 

Hedge funds were among the first to spot that the credit 
default swap (CDS) and the out-of-the-money puts have much 
in common, and the practice of arbitraging the equity and credit 
markets gave rise to the equity-to-credit paradigm. It is now well 
recognised that credit is a major driver of the shape of the smile for 
single names as soon as their CDS spreads rise above, for example, 
100 basis points.
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If credit is an inescapable issue for single names, surely it is 
not relevant in the case of equity indexes. Since most exotic 
derivatives in the equity space are written on indexes, there is hope 
in saving the diffusion framework and its ideal tractability when 
default can be ignored. This reasoning underlies the most recent 
research efforts in equity derivatives, all dedicated to tackling a 
second major crack in the local volatility edifice: the production of 
reasonable prices for exotic instruments. 

With no degree of freedom left once the local volatility is derived 
from the vanilla option prices, it is impossible to fit the prices of 
additional exotic instruments that do not agree with the local 
volatility model in the first place. However, it very quickly became 
apparent to exotic equity desks that the local volatility model 
mispriced most exotic instruments. The view that this mispricing 
was only temporary and could be arbitraged away soon became 
untenable. Quants were under pressure to produce models with 
additional degrees of freedom that would match the market prices 
of a few key exotic instruments while still fitting the entire surface 
of vanilla options. They combined a local volatility parameter to 
a stochastic volatility model with the hope of getting the best 
of both worlds: the stochastic volatility would be relevant to the 
exotic instruments while the local volatility would help produce 
the desired vanilla option prices.

This approach proved successful for instruments that heavily 
depend on stochastic volatility. It is certainly clear, for instance, 
that an option on the VIX will not survive long in a local volatility 
environment and, symmetrically, a few VIX option quotes will 
help pinpoint the volatility of the volatility, a parameter that is 
very difficult to fix from vanilla option prices alone. For long-
dated barrier options or forward-starting options, the correlation 
between the volatility parameter and the price of the underlying 
is critical. Mixing local and stochastic volatility produces far more 
realistic dynamics for future smiles than was possible with local 
volatility alone, and exotic instruments depend as much on the 
behaviour of future smiles than on the shape of the current one. 
The cardinal sin of the local volatility setting was to assume that the 
current smile would determine the process of future smiles.

So much for the good news. The bad news is there is 
considerably more going on in the equity derivatives space than 
can be grasped by a mixture of local and stochastic volatility. 
There is ample evidence that jumps add critical features to the 
dynamics of the underlying that cannot be tackled under a smooth 
diffusion setting. Short-dated options are all about jumps and, 
for the popular weekly options, even small jumps can make a 
huge difference. Rare, but catastrophic, events cannot be ignored 
either. They can be described as very large jumps, not only on the 
underlying price, but also on the volatility, as anyone following 
the VIX can testify. These extraordinary events are some of the key 
factors driving the negative skew on the smile and the positive 
skew on the VIX smile.

Jumps are rather painful to calibrate but are not difficult to 
model. If jumps are indeed required, why not simply add a few 
Poisson processes to our preferred diffusion? We would then surely 
get the best possible model – the Swiss army knife of the equity 
derivatives quant. Unfortunately, you would still fall short of many 
critical components. The structure of the jumps is itself stochastic, 
and so is the correlation between the underlying price and the 

volatility. Add to the mix dividends and a credit component in the 
case of single names, both stochastic with a complex correlation 
structure with the volatility and the jumps, and you get a very 
complex picture indeed. 

All of these features can be nicely embedded in a relatively 
simple regime-switching model where each regime is a jump-
diffusion process with its own level of volatility, jump structure, 
default intensity and dividend yield. Regimes are selected by a 
continuous Markov process, and the much-needed correlation 
between the regimes and the underlying price is achieved by 
letting the underlying jump during a regime switch. This regime-
switching model provides an incredibly rich framework that 
can morph and adapt itself to a very large number of situations 
relevant to the equity space. 

Think about a company planning a leveraged buyout or a 
merger. The success or failure of this transaction could mean, 
respectively, higher or lower volatility, credit rating and dividend 
yield. And it could be associated with a positive or negative jump 
on the underlying price. Rather than imposing a rigid scenario to 
this event, a calibration of the regime-switching model to available 
derivatives prices will extract from forward-looking instruments the 
way the market sees this event unfolding.

Calibrating such a rich regime-switching model is not an easy 
task, particularly since closed-form solutions are typically not 
available. This probably explains why such simple models have 
never become mainstream. Research is dedicated to finding 
models with quasi closed-form solutions, since it is believed that 
only closed-form solutions can be calibrated in a timely fashion. 
What matters, however, is not so much the availability of closed-
form solutions, it is the ability to solve the direct pricing problem 
very efficiently. In a regime-switching model with three regimes, 
for instance, this means solving three coupled partial differential 
equations or three binomial trees where each node on one tree 
is possibly connected with the nodes on the other two trees. The 
gain in terms of modelling versatility is enormous; the pain in terms 
of computer load is minimal.

In conclusion, I strongly believe that both time and spot 
homogeneity are essential features of the regime-switching 
model, and indeed of any decent model in finance. If you need 
to introduce spot or time dependency in your parameters to fit 
some market feature, it is most probably a sign that you are missing 
some stochastic underlying story. It is a shame, for instance, to 
describe an upward-sloping term structure of CDS spreads with a 
time-dependent default intensity when two levels of credit and a 
Markov transition would nicely capture a simple stochastic credit 
event. The key words here are ‘efficiency’ and ‘robustness’. Ask Isaac 
Newton what he would think of a model where the field of gravity 
is tweaked as a function of space and time just to ensure the apple 
falls squarely on his head.
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